ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells.

نویسندگان

  • Shougang Zhuang
  • Yan Yan
  • Rebecca A Daubert
  • Jiahuai Han
  • Rick G Schnellmann
چکیده

Reactive oxygen species, including hydrogen peroxide (H(2)O(2)), are generated during ischemia-reperfusion and are critically involved in acute renal failure. The present studies examined the role of the extracellular signal-regulated kinase (ERK) pathway in H(2)O(2)-induced renal proximal tubular cells (RPTC) apoptosis. Exposure of RPTC to 1 mM H(2)O(2) resulted in apoptosis and activation of ERK1/2 and Akt. Pretreatment with the specific MEK inhibitors, U0126 and PD98059, or adenoviral infection with a construct that encodes a negative mutant of MEK1, protected cells against H(2)O(2)-induced apoptosis. In contrast, expression of constitutively active MEK1 enhanced H(2)O(2)-induced apoptosis. H(2)O(2) induced activation of caspase-3 and phosphorylation of histone H2B at serine 14, a posttranslational modification required for nuclear condensation, which also were blocked by ERK1/2 inhibition. Furthermore, blockade of ERK1/2 resulted in an increase in Akt phosphorylation and blockade of Akt potentiated apoptosis and diminished the protective effect conferred by ERK inhibition in H(2)O(2)-treated cells. Although Z-DEVD-FMK, a caspase-3 inhibitor, was able to inhibit histone H2B phosphorylation and apoptosis, it did not affect ERK1/2 phosphorylation. We suggest that ERK elicits apoptosis in epithelial cells by activating caspase-3 and inhibiting Akt pathways and elicits nuclear condensation through caspase-3 and histone H2B phosophorylation during oxidant injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

FAM3A Protects HT22 Cells Against Hydrogen Peroxide-Induced Oxidative Stress Through Activation of PI3K/Akt but not MEK/ERK Pathway.

BACKGROUND/AIMS Oxidative stress-induced cell damage is involved in many neurological diseases. FAM3A is the first member of family with sequence similarity 3 (FAM3) gene family and its biological function remains largely unknown. METHODS This study aimed to determine its role in hydrogen peroxide (H2O2) induced injury in neuronal HT22 cells. The protective effects were measured by cell viabi...

متن کامل

Matrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression

The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...

متن کامل

Transglutaminase-1 protects renal epithelial cells from hydrogen peroxide-induced apoptosis through activation of STAT3 and AKT signaling pathways.

Our recent studies showed that transglutaminase-1 (TGase-1) is uniquely expressed in mouse renal proximal tubular cells (RPTC) and mediates cell proliferation. In this study, we investigated the role of TGase-1 in cell survival and the survival signaling pathways regulated by TGase-1 in RPTC following oxidant injury. Exposure of RPTC to hydrogen peroxide (H2O2) resulted in apoptosis and an incr...

متن کامل

Carboxypeptidase E/NFα1: A New Neurotrophic Factor against Oxidative Stress-Induced Apoptotic Cell Death Mediated by ERK and PI3-K/AKT Pathways

Mice lacking Carboxypeptidase E (CPE) exhibit degeneration of hippocampal neurons caused by stress at weaning while over-expression of CPE in hippocampal neurons protect them against hydrogen peroxide-induced cell death. Here we demonstrate that CPE acts as an extracellular trophic factor to protect neurons. Rat hippocampal neurons pretreated with purified CPE protected the cells against hydrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 292 1  شماره 

صفحات  -

تاریخ انتشار 2007